The Pennsylvania State University

Alyse Sutara, Mechanical Option Technical Report Two

Building and Plant Energy & Emissions Analysis Advisor – Professor Steve Treado The Walt Disney Family Museum in San Francisco, CA

Fall 2009

Table of Contents

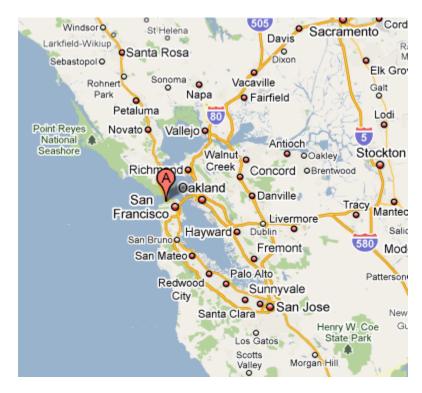
Executive Summary	3
Calculating Heating And Cooling Loads	4
Annual Energy Consumption and Operating Costs	9
Annual Energy Emissions1	14
References1	18
Appendix A Input Values for Rooms, Walls, and Windows1	19
Appendix B Trane Trace Templates2	22

Executive Summary

This report summarizes an energy load analysis that was performed in order to determine the design load, annual energy consumption and operating costs of the Walt Disney Family Museum, located in the Presidio of San Francisco.

This energy load analysis was performed by using Trane Trace. All room areas as well as window areas were calculated by hand because electronic files of the building were not available. Trane Trace was selected for the analysis because of my familiarity with using the program on past projects as well as the input ease. All data inputted into Trane Trace were taken directly from the design documents, such as the Outside Air Ventilation Rates, the lighting and equipment electrical loads, the design indoor and outdoor air conditions for the heating and cool conditions within San Francisco.

Load and ventilation rates were calculated and found to be within range of the design document loads. However, the results of the annual energy consumption could not be compared with the utility bills and data from the Museum because the Museum opened on October 1, 2009.


Most of the loads and ventilation within the building were found in the Exhibit Spaces, Media and Gallery Spaces as well as the Lecture Hall where high lighting loads, equipment loads and occupancy loads are found. Interactive programs, video displays and audio equipment create large demands on the electrical loads as well as cooling loads for the Museum spaces. Addressing such large energy consumption within the lighting and media equipment may be a concern for the WDFM in future years to come.

AT THE PRESIDIO OF SAN FRANCISCO

Calculating Heating and Cooling Loads

The first step in building a load and energy model is to select the location of the building. The Walt Disney Family Museum is located in the Presidio of San Francisco. For this analysis, San Francisco, California, at 37degrees latitude and 122 degrees longitude, was selected as the location, in an urban city environment.

The seasonal loads were also selected by the designers in order to calculate the cooling and heating loads within the building. Indoor design conditions were also selected and this information is listed in the following table:

Design Conditions as per ASHRAE and Building Requirements					
Seasonal LoadsDry Bulb TemperatureWet Bulb Temperature					
Cooling Loads (Summer)	75°F (0.4%)	63°F (0.4%)			
Heating Loads (Winter)	40°F (99.6%)	-			
Indoor Design Conditions	68-70°F (±2°F)	-			

After inputting the location and weather data for the city, the next step in creating an appropriate energy modeling analysis is to define the building materials found within the Museum.

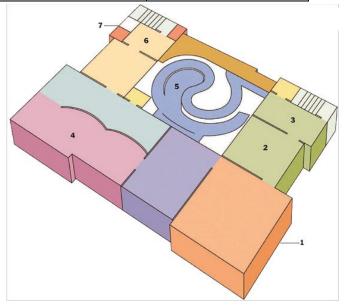
Building Component	Type of Material	U-Value (Btu/hr-ft ² -°F)
Slab	4" LW Concrete	0.2126
Roof	Attic Roof, 6" Insulation0.048	
Wall	Wood-framed, brick façade	0.089
Partition	Drywall	0.388
Windows	¼" Single Pane	0.95
Windows (Infill area)	Insulating Tinted	0.60

These materials are located in the following table:

The next step in creating the model was to define room areas and room heights, which were calculated by hand from the drawings. Room heights were taken as 10 feet with 2 feet of ceiling spaces. Areas were taken from previous analysis calculated in past projects.

Building lighting and equipment loads are defined by individual space uses. The Museum has higher lighting loads due to the artistic, theater style lighting within the Exhibit Spaces, Media Explosion Areas and Galleries. Also, the Museum does not utilize natural day lighting due to the historical preservation requirements that required the architect to keep as much of the original building, the structure as well as the façade intact. The Lecture Hall in the Basement Level also has high lighting loads as the space requires appropriate lighting for events and is also located in the basement.

These same areas and the Learning Areas also have heavy equipment loads due to interactive displays, movie projects and audio exhibits.


Building Electrical Loads as Individual Spaces				
Spaces	Lighting (W/ft ²) Equipment (W/			
Exhibit Spaces, Media	6	3		
Explosions				
Gallery Spaces	6	3		
Lecture Hall	3	1400 W		
Learning Areas	1.5	1400 W		
General Offices	1.2	0.5		
Corridor	1.5	0.0		
Bookstore	1.5	0.0		
Conference Rooms	1.2	0.0		
Lobby	1.5	1.5		
Reception	1.5	0.5		
Restaurant/Dining	1.5	1.5		
Telephone/Data	1.5	350W		

Within the next step of building the energy model, occupant loads and necessary outdoor air must be factored into the model as well. In most cases, the occupancy loads were determined using the furniture drawings in order to appropriately calculate loads. For example, in the Learning Areas, 24 desks are located within the room in addition to 2 instructor desks and therefore, 26 people may occupy the area. However, not all of the design occupancy loads were available from the design documents. Therefore, typical people loads and ventilation rates per occupants were taken from the Trane Trace library. The chart below shows values that were inputted in the program when design occupancy loads could not be calculated using the drawings.

Designed Occupancy and Outside Air as Individual Spaces				
Spaces	People (ft²/person)	Outside Air (cfm/person)		
Exhibit Spaces, Media Explosions	75	20		
Gallery Spaces	75	20		
Lecture Hall	125 persons	20		
Learning Areas	75	20		
General Offices	Varies per office	Operable windows		
Corridor	-	0.05 cfm/ft ²		
Bookstore	50	15		
Conference Rooms	20	20		
Lobby	33.3	15		
Reception	16.7	15		
Restaurant/Dining	15	20		
Telephone/Data	143	20		

The energy model room inputs were not inputted into the program as exterior zones versus interior zones, however, instead the Museum was broken down into the 9 different gallery zones, learning areas, lecture hall as well as different offices on the attic level. The diagram to the right shows how the galleries were selected (Disregard the numbering).

In selecting the equipment within the building, the 4 AHUs were modeled as 1 AHU and the

system was entered as a Bypass VAV with Reheat (30% Minimum Flow Default) within the Air Conditioning system.

The system was assigned to the two plants that were entered in the model. The cooling system consists of a three centrifugal, water-cooled chillers and cooling tower with a variable frequency drive. Each chiller has a constant volume chilled water pump associated as well as a variable volume building distribution pump. Therefore, the system was modeled as a Decoupled 3 Chiller, Variable Frequency Drive Tower within the Trane Trace Program.

Plant Configuration \	Wizard		
Select the desired chiller p	plant configuration:		
with VFD. Each chiller has a consta condenser pump (75 ftwg ftwg).) Twr Twr) Twr) Twr) Twr wr Twr "primary-secondary" p chillers piped in para nt volume chilled wa g), and a variable volu	vFD pumping arrangement illel with bypass line and coo ter pump (25 ftwg), a consta ume building distribution pum especify pump information.	nt volume
		Cancel	ОК

The heating system entered as a gas fired hot water boiler with a capacity of 1000Mbh with an efficiency energy rate of 83.3%. The primary-secondary hot water pump system has a full load consumption of 80 ft of water. There is no thermal storage within this system.

In the chart below, a break-down of the load sources within the building is listed. The largest cooling loads are lighting loads, occupancy loads, miscellaneous equipment which and solar gain which also correlate with the energy consumption of each of these components.

Calculated Cooling Loads Type	Total Load (Btu/hr)	Percent of total load
Solar Gain	128,272	20.4%
Glass Transmission	-7,851	-1.2%
Roof Transmission	3,462	0.6%
Lighting	195,881	31.1%
People	163,230	26.0%
Misc. Equipment	131,889	21.0%
Cooling Infiltration	-7,475	-1.2%
Ventilation	-31,348	-5.05%
Exhaust Heat	-9,998	-1.6%
Lighting Load to Plenum	48,970	7.8%
Supply Fan Load	8,274	1.3%
Totals	615,632	100%

As a result of the energy modeling analysis, the total cooling and heating loads as well as the total supply air and ventilation supply air were calculated. The results from the energy model calculated by Trane Trace and the Design Documents were comparable. The Trace calculations over-estimated the cooling loads by 13.5% and under-estimated the heating loads by 8.3%. The total calculated supply air was less than the calculated design document calculations and the ventilation supply air was also less than the design documents as well. The outside air percentage was also higher in the design documents than the Trace energy model.

However, overall, the results are within an appropriate range. A Trane Trace energy model was created by the original design team and used in calculating loads. Therefore, the results are within range of the design documents.

AHU	Trane Trace Calculations	Design Document Calculations
Cooling Load	159.99 ft ² /ton	138.25 ft ² /ton
Heating Load	18.02 Btuh/ft ²	19.65Btuh/ft ²
Total Supply Air	1.71 cfm/ft ²	2.21 cfm/ft ²
Ventilation Supply Air	0.3365 cfm/ft ²	0.4884 cfm/ft ²
Outside Air Percentage	19.7%	22.1%

Annual Energy Consumption and Operating Cost

Within the Museum, the largest load within the building is the lighting system followed by receptacles. When analyzing the results of the Trane energy load generation, this makes sense because the lighting loads are so large due to the uses within the spaces as well as the lack of natural day lighting incorporated into the building. The Museum, as a protected historical building, was forced to keep as much of the façade and structure in tact as possible, including the original windows. The original wooden widows with 1/4" single pane glass are 1.5' x 3.5ft' with a total area of each window equaling 5.5 ft².

The loads on the receptacles come from the projectors, interactive displays, audio exhibits and other electronic education tools.

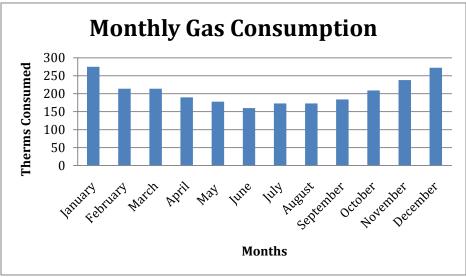
Total heating consumption is very small, totaling only 5.7% of the overall energy consumption within the building each year. Due to the mild weather within San Francisco as well as the heating from the lighting and receptacles, heating loads are much smaller than most other buildings such as office buildings, retail centers, etc.

Tota	Total Energy Consumption within Building per Year					
Energy Load Type	Electrical	Gas	Water	Percentage		
	Consumption	Consumption	Consumption	of Total		
	(kWh)	(kBtu)	(1000 gals)	Energy		
Primary Heating	-	247,947	-	4.8%		
Heating Accessories	13,140	-	-	0.9%		
Cooling Compressor	83,281	-	-	5.4%		
Tower/Condenser Fans	10,093	-	764	0.7%		
Condenser Pump	8,035	-	-	0.5%		
Cooling Accessories	4,816	-	-	0.3%		
Supply Fans	119,160	-	-	7.8%		
Pumps	19,455	-	-	1.3%		
Base Utilities	256,666	-	-	16.8%		
Lighting	628,448	-	-	41.1%		
Receptacles	313,984	-	-	20.5%		
Totals	1,457,078	247,947	764	100%		

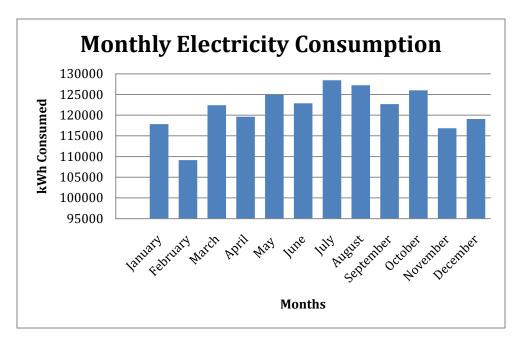
Total cooling loads equal 6.9% of the building total energy consumption while the Auxiliary loads total 25.8% of the total energy consumption.

Pacific Gas and Electric Utility Company bills the Walt Disney Family Foundation per therm each month. The Museum consumes2479 therms per year, therefore, it falls under the category of consuming 123.1 therms and up. The Customer Charge per day is the highest amount billed at \$2.14936 multiplied by 365 days per year for an amount of \$784.52, a Procurement Chare totaling \$1,271.08 and a Transportation Charge of \$257.93 for a total year cost of \$2,313.54.

The Presidio Trust Utility Building provides electricity at a constant cost of \$0.141 per kWh. Therefore, the cost of electricity to the Walt Disney Family Museum totals \$205, 447.98 each year.


The Presidio Trust also provides water to the Museum at a rate of \$2.77 per kgal. Therefore, the total cost of providing water to the system totals \$2,116.28

Utility Rates from the Presidio Trust Utility Billing				
Water Consumption Rate	\$2.77 kgal			
Electricity Rate	\$0.141 kW/h			
Gas Rates from Pacific Gas and Energy (G-NR1 Schedule Type)				
Customer Charge (per day) \$2.14936				
Procurement Charge (per therm)	\$0.51274			
Transportation Charge (per therm)	\$0.10405			
Total Cost per Year	\$2313.54			

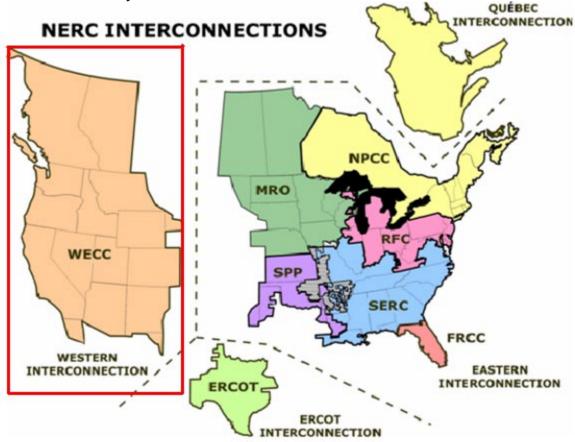

The table below shows a break-down of the cost of each energy load. Once again, the lighting and receptacle loads are the largest energy consumers. When averaged per each month, the cost of lighting for the Museum each month totals \$7,384.26 while the cost of receptacles totals \$3489.31.

Total	Total Energy Consumption within Building per Year					
Energy Load Type	Electrical	Gas	Water	Percentage		
	Consumption	Consumption	Consumption	of Total		
	Cost	Cost	Cost	Energy		
Primary Heating	-	\$2313.54	-	4.8%		
Heating Accessories	\$1852.74	-	-	0.9%		
Cooling Compressor	\$11,742.62	-	-	5.4%		
Tower/Condenser Fans	\$1,423.11	-	\$2,116.28	0.7%		
Condenser Pump	\$1,132.93	-	-	0.5%		
Cooling Accessories	\$679.05	-	-	0.3%		
Supply Fans	\$16,801.56	-	-	7.8%		
Pumps	\$2743.15	-	-	1.3%		
Base Utilities	\$36,189.91	-	-	16.8%		
Lighting	\$88,611.17	-	-	41.1%		
Receptacles	\$44,271.74	-	-	20.5%		
Totals	\$205, 447.98	\$2,313.54	\$2116.28	100%		

The following two charts show the usage of gas and electricity based on monthly usage. The peak months found within the winter, utilize much more gas than the summer months based on heating loads.

The electricity consumption within the Museum peaks during the summer months, when a greater cooling demand arises due to the higher outside air conditions.

Finally, the cost each year per square foot to operate the building can be calculated by dividing the total cost per year by the total conditioned building area. A monthly analysis is also provided in the table below.


Utility	Electricity	Gas	Water	Total Cost per Year
Totals	\$205, 447.98	\$2,313.54	\$2116.28	\$209,877.80

Yearly and Monthly Ene	rgy Cost
Yearly Energy Cost	\$6.05/ft ²

Unfortunately, no energy model was created by the design staff because it was not required by the owners. The Walt Disney Family Foundation did not wish to qualify for any type of LEED Certification. A possible reason for this could be due to budget restraints and also because California Code of Energy, Title 24, a very strict energy guideline for building required the Museum to be compliant with energy standards.

Annual Energy Emissions

The Walt Disney Family Museum's annual energy emissions associated with the electrical energy consumption have been calculated. The Museum, located in San Francisco, CA, is within the Western Interconnection of the North American Electrical Reliability Council.

The following chart consists of the type of energy used in generating the electricity within the Western Interconnection. The largest energy consumed in creating electricity is natural gas in which the Museum consumes 399,239.4 units of natural gas per year from its consumption of electricity.

Total Energy Produced from Fossil Fuels in the Production of Electricity									
Energy Type	Western %	kWh Produced							
Bituminous Coal	13.1	190,877.22							
Subitumious Coal	19.8	288,501.44							
Lignite Coal	0.0	0							
Natural Gas	27.4	399,239.37							
Petroleum Fuels	0.5	7,285.39							
Other Fossil Fuels	0.3	4,371.234							
Nuclear	9.9	144,250.72							
Hydro	24.6	358,441.19							
Renewable Fuels	1.3	18,942.01							
Geothermal	2.1	30,598.64							
Wind	1.0	14570.78							
Solar (PV)	0.1	1457.07							

The Museum utilizes electricity in providing energy for the loads within the building and therefore, when using electricity, emissions result from the delivery from the power plant to the building. In determining the total annual emissions due to delivery to the Museum, the total electrical energy used by the Museum was multiplied by the lb_m of pollutants per kWh.

Total Annual Emissions from Delivered Electricity to the Museum								
Pollutant (lb)	Western	Lb of Pollutant per kWh						
CO _{2e}	1.31E+00	1,908,772.18						
CO ₂	1.22E+00	1,777,635.16						
CH ₄	3.51E-03	5,114.34						
N ₂ O	2.97E-05	43.27						
NO _x	1.95E-03	2,841.3						
SO _x	6.82E-03	9,937.27						
СО	5.46E-04	795.56						
PM10	6.99E-05	101.85						
Solid Waste 1.39E-01 202,533.84								
Total Er	nissions	3,907,868.75 lb						

The total emissions listed in the charts are emissions which are notable contributors to green house gases and potentially global warming. Within the DOE's report on Source Energy and Emission Factors for Energy Use in Buildings, the National Renewable Energy Lab includes Lead and Mercury emissions within their analysis; however, I omitted these two types of emissions because the amounts were so small.

The following chart calculates the emissions from the boiler's on-site combustion of natural gas per 1000ft³. Again the largest pollutant is carbon dioxide and carbon dioxide equivalent (CO_{2e}) which shows the overall lbm of pollutant of carbon dioxide plus the radiative properties which is based on the global warming potential (GWP). Therefore, the overall impact of carbon dioxide totals that of the carbon dioxide equivalent.

Total Annual Emissions from On-Site Combustion of Natural Gas within Museum								
Energy Type	Western	Lb of Pollutant per						
		1000 ft ³						
CO _{2e}	1.23E+02	304,974.81						
CO ₂	1.22E+02	302,495.34						
CH ₄	2.50E-03	619.86						
N ₂ O	2.50E-03	619.86						
NO _x	1.11E-01	27,522.11						
SO _x	6.32E-04	156.70						
СО	9.33E-02	23,133.45						
PM10	8.40E-03	2,082.75						
Total Emis	sions	663,124.97						

Finally, the overall annual emissions from electrical energy delivered to the Museum, as well as the on-site combustion of natural gas by the heating system, is totaled in the following chart. The largest amount of pollutants comes from carbon dioxide followed by nitrous oxides. A large amount of solid waste is also produced while using electricity and natural gas which this waste consists of bottom ash, fly ash, boiler slag and sludge. This can contribute to a build-up of waste within the system and also contributes to air pollution as well. Finally, PM10, which stands for particulate matter, which is the measure of particles within the atmosphere that are 10 micrometers of smaller.

Total Annual	Emissions from Er	nergy used within	the Museum					
Pollutant (lb)	Lb _m of Pollutant	Lb _m of Pollutant	Total pounds of					
	per 1000 ft ³	per kWh	Pollutants					
CO _{2e}	304,974.81	1,908,772.18	2,213,746.99					
CO ₂	302,495.34	1,777,635.16	2,080,130.5					
CH ₄	619.86	5,114.34	5,734.2					
N ₂ O	619.86	43.27	663.13					
NO _x	27,522.11	2,841.3	30,369.41					
SO _x	156.70	9,937.27	100,93.27					
CO	23,133.45	795.56	23,929.01					
PM10	2,082.75	101.85	2,184.6					
Solid Waste	-	202,533.84	202,533.84					
Total lbm of emissions per year4,453,409.51								

Again, the Museum's design team did not perform an energy analysis therefore, no annual emissions were calculated. However, from the Trane Trace analysis, the environmental impact analysis reports that emissions from CO_2 equal 1,071,430 lbm which is half of the calculation determined by the DOE's method of analysis.

References

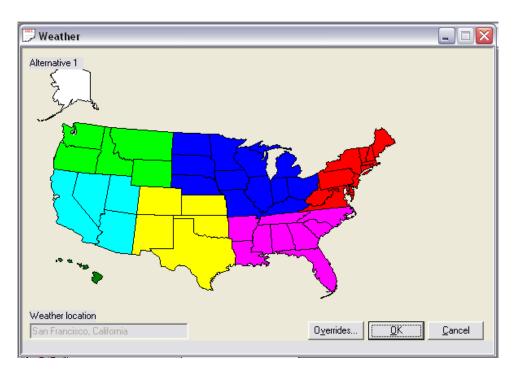
Trane Trace 700 Software, Building Energy and Economic Analysis

Deru, M., and P. Torcellini. *Source Energy and Emission Factors for Energy Use in Buildings*. Oak Ridge, TN: U.S. Department of Energy, 2007.

Appendix A – Room, Wall and Window Inputs

Room	Room Title	A _z (ft²)	P _z (Zone Pop)	Wall 1 Length (ft)	NSWE (In degrees)	Window (ft ²)	Wall 2 Length (ft)	NSWE (In degrees)	Window (ft ²)
013	Light Lock	32	_						
013A	Vestibule	28	2						
014	A/V Closet	28	1						
015	Elec. Closet	24	1						
016	Group Lobby	420	32						
017	Light Lock	36	-						
018	Control Room	80	2						
020	Stair/Elev. Lobby	128	10						
020A	Coatroom	54	-						
	Drinking								
021	Fountains	32	-						
022	Janitor Closet	60	-						
023	Men's Room	180	N/A						
024	Women's Room	180	N/A						
025	Corridor	540	-						
026	Nurse's Room	140	1						
027	Learning Area	420	8						
028	Learning Area	504	9						
	Warming								
029	Kitchen	160	4						
030	Corridor	40	-						
030A	Trash	16	N/A						
031	Elev. Pit	50	N/A						
032	Elec. Closet	40	1						
033	Staff Rm/Green Rm.	120	3						
033	Mail Room	120	3						
034	Staff Entry	100	1						
030	Security	96	1						
038	Security Closet	64	-						
102	Gallery 10A	288	6	11	180	5.25	_	_	_
102	Elec. Closet	200	0	11	100	5.23			
103	A/V Closet	24	0						
104	Galley 10B	450	9	32	180	26.25	-	-	_
105	Exit Lobby	280	21	32	90	15.75	-	-	-
100	Coffee Shop	220	8	-	-	-	-		_
107	Bookstore	650	6	38	180	15.75	42	270	21
100	Mngr. Office	40	1	10	180	5.25	10	90	5.25
107	migr. onice	10	1	10	100	5.25	10		5.25

Alyse Sutara, Mechanical Option Technical Report Two


Fall 2009

112	Pre- w/Assembly Gallery	760							
112		760							
			11	42	270	21	48	0	21
113 Ele		448	9	32	0	26.25	-	-	-
	ctrical Room	40	1	40					
	Gallery 1C	288	6	18	0	5.25	-	-	-
117 Blu	ie Sky/Scene 9	1840	30	64	90	320	_	_	-
201A	WC	28	N/A	01	,,,	010			
	Gallery 7B	200	4	-	-	-	-	-	-
	Elec. Closet	24	0						
204 A	A/V Closet	28	0						
205	Gallery 7	480	10	32	180	26.25			
206	Gallery 6	800	16	48	180	21	42	270	26.25
207	Gallery 5	680	14	32	270	21	-	-	-
208	Gallery 4	720	14	32	270	21	-	-	-
	Gallery 3	760	15	42	270	26.25	48	90	21
	Gallery 2B	510	10	32	0	26.25	-	-	-
	ctrical Closet	20	0						
	itor/Storage	40	-						
	Gallery 2A	288	6	18	0	5.25	-	-	-
	Gallery 9	1660	45	-	-	-	-	-	-
	Gallery 8	272	6	64	90	320	-	-	-
	Corridor	68	2	-	-	-	-	-	-
302	offee/Break Room	128	5	11	180	5.25	_	_	_
303	WC	50	N/A	11	100	5.25			
	Elec. Closet	20	-						
305	Storage	50	-						
	Corridor	250	2	8	0	5.25	_	-	-
	IT Room	150	5	16	180	10.5	-	-	-
308	Storage	80	-						
	Elev. Mech.								
309	Room	28	-						
	Corridor	140	2	-	-	-	-	-	-
	Open Office	500	8	13	180	15.75	14	270	10.5
312A	Storage	40	-						
312B	Storage	60	-						
313	Office	200	4	-	-	-	-	-	-
	Corridor	200	2	15	90	10.5	-	-	-
	Corridor	20	2	-	-	-	-	-	-
317	Conference Room	192	18	-	_	-		-	
	Vork Station	192	2	- 28	270	21	-	-	-
319 W	Office	320	8	14	270	10.5	13	- 0	- 15.75
	Conference	520	0	TT	270	10.5	15	0	10.75
319A	Room	60	6	-	-	-	-	-	-

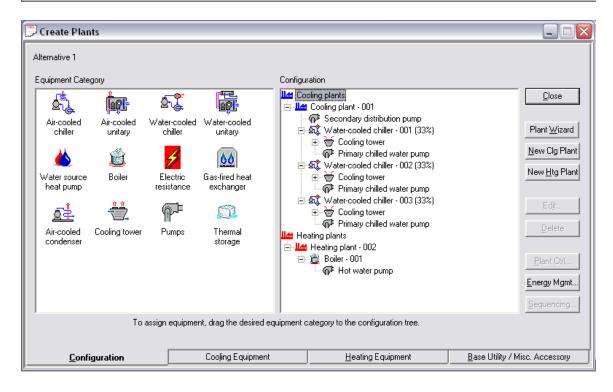
Alyse Sutara, Mechanical Option Technical Report Two

Fall 2009

321	Office	56	1	-	-	-	-	-	-
322	Office	56	1	-	-	-	-	-	-
323	Corridor	50	2	8	90	5.25	-	-	-
323A	Storage	150	-						
324	Electrical Room	16	-						
325	Office	192	4	16	0	10.5	-	-	-
326	Corridor	90	2	-	-	-	-	-	-
	Elevator Mech.								
327	Room	24	-						
328	WC	36	N/A						

Appendix B – Trane Trace 700 Templates Used

Internal Loa	nd Tem	plates - Project					
Alternative	Alterr	native 1	•				Apply
Description	Learn	ing Area	-				Close
People							New
Туре	Classroo	om				-	
Density	75	sq ft/person 💌	Schedule	Cooling On	ly (Design)	•	Сору
Sensible	250	Btu/h	Latent	200 Bt	tu/h		Delete
Workstations							Add Global
Density	1	workstation/person 💌					
Lighting							
Туре	Recess	ed fluorescent, not vented, (30% load to sp	ace		-	
Heat gain	1.5	W/sq.ft 💌	Schedule	Cooling On	ly (Design)	-	
Miscellaneou	s loads						
Туре	None					-	
Energy	1400	W •	Schedule	Cooling On	ly (Design)	•	
Energy meter	None	•					
<u>Internal</u>	Load	Airflow	<u>I</u> herm	nostat	<u>C</u> onstruction]	<u>R</u> oom


Alyse Sutara, Mechanical Option Technical Report Two

lternative	Altern	ative 1	*					Apply
escription	Learni	ing Area	•					Close
Main supply			Auxiliary supp	oly				
Cooling		To be calculated 💌	Cooling		To be calculated	•		New
Heating		To be calculated 💌	Heating		To be calculated	•		Сору
Ventilation			Std 62.1-2004	/2007				Delete
Apply ASHR	AE Std	62.1-2004/2007 No 💌	Clg Ez 🕻	lustom	1	-	7.	Add Glob
Туре	Classr	room 💌	Htg Ez (lustom		-	%	A00 0100
Cooling	20	cfm/person	Er D	efault bas	ed on system type	-	2	
Heating	20	cfm/person 💌	DCV Min	OA Intake	None	_	Ŧ	
Schedule	Availa	ble (100%)	Room exhau	st				
Infiltration			Rate	0	air changes/hr	•		
Туре	Neutra	al, Average Const. 📃 💌	Schedule	Availabl	e (100%)	•		
Cooling	0.6	air changes/hr 💌	VAV minimur	a				
Heating	0.6	air changes/hr 💌	Rate		% Clg Airflow	•		
Schedule	Availa	ble (100%)	Schedule	Availabl	e (100%)	•		
			Туре	Default		-		
	əd	-	Thermosta		Construction			<u>R</u> oom

💭 Create Rooms - Single Workshe	et				_ = 🛛
Alternative 1					Apply
Room description Room 210 - Gallery 2B	1	•			<u>C</u> lose
Templates	Length	Width			
Room Gallery Spaces 💌	Floor 510	ft 1 ft			<u>N</u> ew Room
Internal Gallery Space 🗨	Roof 📀 🛛	ft 0 ft			Сору
Airflow Gallery Space 💌	C Equals flo	or			 Delete
Tstat Default 💌	Wall				
Constr Default 💌	Description Length ((t) Height (ft) Direction	n % Glass or Qty	Length (ft) Height (ft)	
	Wall - 1 32			1.5 3.5	
	0	10 0		0	
	0	10 0) <u> </u>	-
	Internal loads		Airflows		
	People 10	People 💌	Cooling vent	20 cfm/person	•
	Lighting <mark>6</mark>	W/sq.ft 💌	Heating vent	20 cfm/person	•
	Misc loads 3	W/sq ft 🔹	VAV minimum 🛛	% Clg Airflow	•
Single Sheet Rooms	Roo <u>f</u> s	<u>W</u> alls	Int Loads	<u>A</u> irflows	Partn/Floors

Alyse Sutara, Mechanical Option Technical Report Two

Create Systems	Selection					
Alternative 1 System description System category	HVAC System	<u>.</u>	Bypass VAV with	Reheat (30% Min Flow I	Default)	Apply Close
All Variable Volume Constant Volume Constant Volume Heating Only Induction Underfloor Air Dist	- Mixing					<u>N</u> ew C <u>opy</u> Delete Advanced
Changeover-Bypa Changeover-Bypa Changeover-Bypa Double Duct VAV Parallel Fan Powe Parallel Fan-Powe	ass VAV with Local He ass VAV with Reheat ared VAV, Htg Coil on ared VAV, Htg Coil on ed VAV Duct VAV	eat Mixing Box Outlet				
<u>S</u> election	<u>O</u> ptions	Dedicated OA	<u>T</u> emp/Humidity	<u>F</u> ans	<u>C</u> oils	Sc <u>h</u> ematic

